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Abstract: This research work investigates the applicability of some lower and 
upper, matrix and scalar bounds for the solution of the Continuous Algebraic 
Lyapunov Equation (CALE), when the coefficient matrices are the state matrices of 
real data models. The bounds are illustrated for two different models describing the 
dynamic behavior of power systems – a two-area power system and an 
interconnected power system. Some important conclusions referring to the accuracy 
of the respective estimates are made, as well. 
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1. Introduction 

The problem of deriving bounds for the solution of the Continuous Algebraic 
Lyapunov Equation (CALE) attracts interest for more than half a century. This is 
due to both theoretical and practical reasons. In some cases, due to its high order, 
the direct solution of this equation is impossible, and in others it is sufficient to 
have at disposal only some estimates for it. The main difficulty arises from the fact, 
that the available upper bounds are valid under some assumed restrictions imposed 
on the coefficient matrix. Due to this, valid solution bounds are possible only for 
some special subsets of negative stable (Hurwitz) coefficient matrices. 

The main purpose of this research is to investigate the quality of some 
available lower and upper, matrix and scalar bounds for the solution of the CALE. 
Two state space models with real data of a relatively high order n of power systems 
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are used as test examples. The first one is a model of a two-area power system with 
n = 11 states and the second one describes the dynamics of an interconnected power 
system with four local subsystems and n = 8 states. Lower and upper matrix, 
eigenvalue and trace estimates are obtained for the solution. They are compared 
with the exact values and some important conclusions referring to their accuracy are 
drawn.  

The following notations will be used: 0 ( 0)A A> ≥  indicates that A is a 
positive (semi-positive) definite matrix; ( )A∈ ≡n,m n,n nR R R  and nR∈a  denote a 
real n×m matrix A and n×1 vector a; tr(A), 1 2 1 T, ,A A A−  are the trace (sum of 
eigenvalues), the square root (if A is positive semi-definite), the inverse (if A is 
nonsingular) and the transpose of matrix A; the symmetric part of matrix A is 
denoted T

sA A A= + ; m M( ) and ( )A Aλ λ denote the minimal and maximal 
eigenvalue of a symmetric matrix A respectively; the identity matrix of respective 
dimension is I. 

2. Bounds for the solution of the CALE 

From Lyapunov’s stability theorem it follows that a matrix A is Hurwitz (negative 
stable) if and only if the CALE 
(1)  T ,A P PA Q A+ = − ∈ nR  
has a unique positive definite solution matrix P for any given positive definite 
matrix Q. Due to various reasons, having at disposal only bounds on P can be 
sufficient in some practical control design and analysis problems.  

It must be emphasized on the fact that the upper bounds are always more 
difficult to derive, since they are valid only under some restrictions. Till 2004 all 
available upper bounds for the solution of the CALE (e.g., [1] and [2]) are valid 
under the very conservative condition that the symmetric part of the coefficient 
matrix A is negative definite. By making use of the singular value decomposition of 
A, i.e., 

T T T T 1 2

T T T

( ) ( ) ,
I, diag{ } 0, 1,..., ,i

A U V U U UV AA F
UU VV FF i nσ

= Σ = Σ =

= = = Σ = > =
 

 it was proved in [5] that   
(2) T T 1 2

s s0 0, ( ) .A F A R RA R AA −< ⇒ = + < =  
This simple fact helped to extend the set of stable coefficient matrices for 

which there exist valid upper bounds. Various types of based on this result bounds 
were derived in [3] and [4]. 

Definition 1. A matrix L > 0 is said to be a Lyapunov Matrix (LM) for A if 
T 0A L LA+ < . 

In this sense, if the symmetric part of A is negative definite, then I and R are 
LMs for A, in accordance with (2), but R can be a LM even if this condition does 
not hold.  

If there exist positive definite matrices l u,P P , such that 
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(3) T T
u u l lA P P A Q A P P A+ ≤ − ≤ + l u0 ,P P P⇒ < ≤ ≤  

i.e., l u,P P  are lower and upper matrix bounds for P, respectively. In other words, 
the solution estimation problem can always be solved if such matrices can be 
obtained. On the other hand, their determination in the general case, e.g., by LMI 
solution, may require computational effort comparable with the one needed for the 
direct solution of the Lyapunov Equation (LE) and therefore should be avoided.  

Theorem 1. Let R in (2) be a LM for A. Then the solution P of the LE (1) has 
the following bounds: 
(4) 1 1

l l u u l m s u M s, ( ), ( ),R P P P R QF QF− −= ≤ ≤ = = − = −μ μ μ λ μ λ  
(5) m l m M M u( ) ( ) ( ) ( ) ( ), 1,..., ,iP P P P P i n≤ ≤ ≤ ≤ =λ λ λ λ λ  
(6) l utr( ) tr( ) tr( ).P P P≤ ≤  

P r o o f: Let the above assumption holds, i.e., the symmetric part of matrix F 
is negative definite. From the definition in (4) of the scalar and matrix 
parameters l u l u, , ,P Pμ μ , it follows that 

1 2 1 2
l m s s l
1 2 1 2

s s l s l s

[( ) ( ) ]

( ) ( ) ,

F Q F I

F Q F F Q Q F

= − − ⇒ ≤

≤ − − ⇒ − ≤ ⇒ − ≤

μ λ μ

μ μ
 

1 2 1 2
u M s s u
1 2 1 2

s s l s u s

[( ) ( ) ]

( ) ( ) .

F Q F I

F Q F F Q Q F

= − − ⇒ ≥

≥ − − ⇒ − ≥ ⇒ − ≥

μ λ μ

μ μ  

Having in mind that T
sF A R RA= + , one gets the matrix inequalities in (3) for 

l u,P P defined as in (4). This proves the matrix bounds (4). The eigenvalue and trace 
bounds (5) and (6) follow from the well known facts that if ZYX ≤≤ , then  

( ) ( ) ( ), 1,..., , tr( ) tr( ) tr( )i i iX Y Z i n X Y Zλ λ λ≤ ≤ = ≤ ≤  
for arbitrary n×n symmetric matrices X, Y and Z.■ 

3. Power systems models 

Large-scale power systems consist of a number of interconnected via tie-lines 
power control areas. Different complicated nonlinear models of such a system are 
available. However, for control design purposes a simplified linearized model is 
usually used. A two-area power system is taken as a test system in this study. The 
generators are assumed to be a coherent group in each area, which includes  a 
governor, a reheator and a steam turbine. 

3.1. Two-area power system  

The set of first order differential equations with constant coefficients governing the 
overall process in a two-area power system and the description of the respective 
variables and coefficient parameters is given below [6]:  

1 1 1 1 1 tie ,C I IP k b F k P= +�  

1 1 1 1 1 1 1 1 1 21(1/ ) (1/ ) (1/ ) (1/ ) ,G G C G G G GX t P t X r t F t u= − − − +�  
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1 1 1 1 1(1/ ) (1/ ) ,R T G T RP t X t P= −�  

1 1 1 1 1 1 1( / ) (1/ ) ,T T G R R TP k t X aP t P= + −�  

1 1 1 1 1 1 1 1 tie 1 1 11( / ) (1/ ) ( / ) ( / ) ,P P T P P P P PF k t P t F k t P k t u= − − −�  

tie 12 1 12 22 2 ,P T F T Fπ π= −�  

2 2 1 2 2 ,C I I TP k F k P= − −�  

2 2 2 2 2 2 2 2 2 22(1/ ) (1/ ) (1/ ) (1/ ) ,G G C G G G GX t P t X r t F t u= − − − +�  

2 2 2 2 2(1/ ) (1/ ) ,R T G T RP t X t P= −�  

2 2 2 2 2 2 2( / ) (1/ ) ,T T G R R TP k t X bP t P= + −�  

2 2 2 tie 2 2 2 2 2 2 2 12( / ) (1/ ) ( / ) ( / ) ,P P P P P T P PF k t P t F k t P k t u= − + −�  
where 

CiP  – incremental change in the integral controller i, 

GiX – fictitious state variable, 

RiP   – incremental change in the output energy of the i-th reheat type turbine 
in MW, 

TiP   – incremental change in the otput of the i-th subsystem in MW, 

iF    – incremental frequency deviation in subsystem i in Hz, 

tieP   − incremental change in the tie-line power, 

Git    – i-th governor time constant in s, 

Tit    – i-th turbine time constant in s, 

Rit    – i-th reheat time constant in s, 

Pit    – i-th subsystem time constant in s, 

Pik   – i-th subsystem gain in Hz/MW 

Iik    – i-th subsystem integral control gain, 

ib     – i-th subsystem frequency-biasing factor in MW/Hz 

ik     – ratio between the output energy of the i-th turbine to the total output 
energy, 

ir      – speed regulation for the i-th subsystem due to the governor action in 
Hz/MW, 

ijt      – synchronizing coefficient of the tie-line power between subsystems i 
and j. 

The nominal values of the parameters are given in Appendix 1. Having in 
mind the above set of differential equations and defining the state and control 
vectors x(t) and u(t), respectively, as follows 

T( )x t = ( 1CP  1GX  1RP  iP1  1F  tieP  2CP  2GX  2RP  2TP  2F ),  
T

11 12 21 22( ) ( )u t u u u u=  
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helps to put the model in the well known compact matrix (state space) form 
0( ) ( ) ( ), ( ) , (0) , ( ) .x t Ax t Bu t x t x x u t= + ∈ = ∈� 11 4R R  

It has been concluded that the nominal open loop coefficient matrix A is not 
stable, since it has eigenvalues with positive real parts. An optimal stabilizing state 
control law u(t) = – Kx(t) has been applied to the system, where TK B R= −  and R is 
the positive definite solution of the continuous algebraic Riccati 
equation T TA R RA PBB R I+ − = − . The stable close loop nominal system is 

c c,x A x A A BK= = −� . The nominal systems parameters and the computed for them 
state matrix are given in Appendix 1. 

3.2. Interconnected power system  

Consider the linearized model of an interconnected power system comprised of N 
local generators described by the set of differential equations [7]:  

1

1
, , 1, 2,..., ,

N

i i i ij i ij ji
j

R Y Y Y i Nω ω δ−

=

Δ = − Δ + = =∑�  

, 1, 2,..., ,i i i Nδ ω= Δ =�  
where iω  and , 1, 2,..., ,i i Nδ =  denote the angular speed and deviation of the  i-th 
rotor, ijY  is the transfer conductance between subsystems i and j, iiY  is the self 

conductance of the i-th generator and iR  is a specific coefficient associated with the 
i-th subsystem. Using the notation T T T T T 2

1 2( ... ... ) ,N
i Nx x x x x= ∈R  

T 2( )i i ix ω δ= Δ ∈R , the above model can be rewritten in a compact matrix form, 
where the state matrix has the following typical structure 

11 12 1

12 22 2
2

1 2

1

2

;

0
, .

0 01 0

N

N
N

N N NN

iji ii
ii ij ji

А А А
А А А

А

А А А

YR Y
A A A

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤− ⎡ ⎤
= = = ∈⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

…
…

# # % #
…

R

R

 

The considered system is comprised of N = 4 subsystems with the following 
nominal parameter values 

11 22 33

44 12 13 14 23 24 34

0.01, 1,..., 4, 2.2, 2.4, 2.6,
2.8, 0.5, 0.3, 0.2, 0.6, 1, 0.1.

iR i Y Y Y
Y Y Y Y Y Y Y

= = = − = − = −
= − = = = = = =  

The nominal stable state matrix A is given in Appendix 2. 
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4. Numerical experiments 

4.1. Two-area power system  

It is required to determine lower and upper, matrix and scalar bounds for the 
solution P of the LE, where the coefficient matrix in (1) is cA . The solution P 
provides also some valuable information about the quality of the transient process, 
since with the close loop system an integral performance index can be associated of 
the form 

(7)  T T
0 00

( ) ( )J x t Qx t dt x Px
∞

= =∫  

which can be bounded from below and above by respective estimates (if available), 
as well, i.e., 

T T
0 l 0 l u 0 u 0x Px J J J x P x= ≤ ≤ =  

which helps to estimate apriori the dynamic behavior of the system for any given 
non-zero initial state vector without solving the CALE.  

Since the symmetric part of the coefficient matrix cA  is not negative definite 
(it contains zero diagonal entries), all upper bounds based on this assumption are 
not valid in this case. But R is found to be a LM for it and the bounds in (4), (5) and 
(6) are all valid.  

The LE (1) is solved for Q = I. The scalar parameters in (4) are computed as 
l u0.5, 1.991.= =μ μ The comparison process includes the analysis of the extremal 

eigenvalues and the traces of the exact solution matrix P and their lower and upper 
estimates. All eleven eigenvalues (given in a descending order) and traces of the 
solution P and its lower and upper matrix bounds (4), are given in Table 1 and 
Table 2. 

Table 1 
Eigenvalues Pl Pexact Pu 

1 115.4130 178.4124 441.3163 
2   15.2589   24.6369   58.3469 
3     0.9310     1.8672     3.5598 
4     0.3133     0.5402     1.1981 
5     0.1189     0.1403     0.4546 
6     0.1119     0.1323     0.4280 
7     0.0502     0.0535     0.1920 
8     0.0256     0.0341     0.0979 
9     0.0221     0.0326     0.0844 
10     0.0034     0.0082     0.0131 
11     0.0061     0.0081     0.0232 
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Table 2 

ltr( )P  tr( )P  utr( )P  lλ  λ  uλ  
132.2544 205.8658 505.7143 12.0231 18.7151 45.974 

If tr(X) is the trace of some n×n positive definite matrix X, then the parameter 
λ = tr(X)/n is introduced to define the “average” eigenvalue of X. It becomes clear 
that the lower eigenvalue and trace bounds for P are more precise than the upper 
ones, which is not surprising. The accuracy of the bounds depends entirely on the 
parameters l u,μ μ , since =ΔP u l u l, .P P R− = = −μ μ μ μ  

The smaller is the difference, the tighter are all bounds, since the matrix 
interval containing the solution P becomes narrower.  

Now, it will be interesting to get some additional estimates. Define the 
“average” matrix estimate as l u0.5( )E P P= + . It is clear that l uP E P≤ ≤ , i.e., E 
belongs to the matrix interval which contains the exact solution P. The estimate 
error matrix is u lP PΔ = − . The following results for the eigenvalues, traces and 
average eigenvalues of these matrices are computed: 

m M( ) 0.0146, ( ) 278.365, tr( ) 318.984, ( ) 28.9986;E E E E= = = =λ λ λ  

m M( ) 0.0171, ( ) 325.9, tr( ) 373.46, ( ) 33.9509.Δ = Δ = Δ = Δ =λ λ λ  

Consider the performance index (7). It is clear that the following scalar bounds 
are valid for any initial state T T

0 l 0 l u 0 u 0x Px J J J x P x= ≤ ≤ = . Let 0x be an 11×1 vector 
with all entries equal to one. Then, J represents the sum of all entries of the solution 
matrix P. The following results are obtained: 

l u144.7214 221.6909 553.3855;J J J= ≤ = ≤ =  
T T
0 0 0 0349.05, 408.6642.x Ex x x= Δ =  

It can be verified that the matrix bounds and their parameters provide rather 
good estimates for the exact solution, which can be characterized by a very high 
value for the ratio M m( ) / ( ) 22026P Pλ λ = . 

Naturally it is expected that the bounding interval is a rather extended one in 
such cases. 

4.2. Interconnected power system  

The LE (1) is solved for A, as given in Appendix 2 and Q = I. The scalar parameters 
in (4) are computed as l u0.50001537, 0.5007855,= =μ μ  which supposes rather 
tight solution estimates. The extremal eigenvalues, traces and average eigenvalues 
of P and its lower and upper matrix bounds (4) are given below: 

m M( ) 0.0050007, ( ) 33.81064, tr( ) 77.078, ( ) 9.6347,P P P P= = = =λ λ λ  

m l M l l l( ) 0.004998, ( ) 33.81063, tr( ) 77.046, ( ) 9.6308,P P P P= = = =λ λ λ  

m u M u u u( ) 0.005436, ( ) 33.853348, tr( ) 77.643, ( ) 9.7504.P P P P= = = =λ λ λ  
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The percentage errors in the respective estimates are summarized as it is 
shown in Table 3. 

Table 3 

m l( )PΔλ
 % 

M l( )PΔλ
 % 

m u( )PΔλ
 % 

M u( )PΔλ
 % 

mtrΔ
 % 

MtrΔ
 % 

l( )PΔλ
 % 

u( )PΔλ
 % 

0.054 3×10–5 0.0732 0.1263 0.04 0.16 0.0405 0.7335 
 
All respective errors are less than 0.13 %, which confirms that all estimates are 

very tight in this case. This fact is also clear from the computed values for the 
extremal eigenvalues, traces and average eigenvalues of the average matrix estimate 

l u0.5( )E P P= + and the error matrix u lP PΔ = − : 

m M( ) 0.005001, ( ) 33.832, tr( ) 77.095, ( ) 9.6369,E E E Eλ λ λ= = = =  
m M( ) 0.000006, ( ) 0.043, tr( ) 0.0973, ( ) 0.121.λ λ λΔ = Δ = Δ = Δ =  

The  performance  index  and  its  lower  and  upper  estimates  are  computed 
for the same initial state vector as in example 4.1, i.e., 

l u128.99 129 129.16J J J= ≤ = ≤ = , which also illustrates the fact that the obtained 
solution bounds are rather precise in this case. 

R e f e r e n c e s 

1. F a n g, Y., K. L o p a r o, X. F e n g. New Estimates for Solutions of Lyapunov Equations. – IEEE 
Transactions on Automatic Control, Vol. 42, 1997, No 3, 408-411. 

2. K o m a r o f f, N. Upper Sumation and Product Bounds for Solution Eigenvalues of the Lyapunov 
Matrix Equation. – IEEE Transactions on Automatic Control, Vol. 37, 1992, No 5, 337-341. 

3. S a v o v, S., I. P o p c h e v. Bounds for the Solution of the Continuous Lyapunov Equation under 
Relaxed Validity Constraints. –  Advanced Studies in Contemporary Mathematics, Vol. 18, 
2009, No 2, 235-243. 

4. S a v o v, S., I. P o p c h e v. New Generalized Upper Trace Bound for the Solution of the 
Lyapunov Equation. – International Journal of Pure and Applied Mathematics, Vol. 49, 2008, 
No 3, 381-389. 

5. S a v o v, S., I. P o p c h e v. New Upper Estimates for the Solution of the Continuous Algebraic 
Lyapunov Equation. – IEEE Transactions on Automatic Control, Vol. 49, 2004, No 10, 
1841-1842. 

6. S h a y e g h i, H., H. S h a y a n f a r. Automatic Generation Control of Interconnected Power 
Systems Using ANN Technique Based on μ -Analysis. – Journal of Electrical 
Engineering,Vol. 55, 2004, No 11-12, 306-313. 

7. S i l j a k, D. Decentralized Control of Complex Systems. Boston, Academic Press, 1991.  

Appendix 1 

The nominal values of the system’s parameters are as follows: 
1 2 1 2 1 2

1 2 1 2

0.1 s; 0.3 s; 10 s;
20 s; 120 Hz/MW;

G G T T R R

P P P P

t t t t t t
t t k k
= = = = = =

= = = =
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1 2 1 2

1 2 1 2 12 12

2.4 Hz / MW; 0.425 MW/Hz;
0.5; 0.05; 0.0707, 1;I I

r r b b
k k k k T a

= = = =
= = = = = =

 

2222111121 //)(,//)( RTRT tktkkbtktkka −+=−+= . 

The stabilized close loop system state matrix cA A BK= −  is partitioned as 
follows: 
 

11 12
c 11 5 22 6 12 5,6 21 6,5

21 22

, , , , ;
A A

A A A A A
A A
⎡ ⎤

= ∈ ∈ ∈ ∈⎢ ⎥
⎣ ⎦

R R R R
 

 

11

0 0 0 0 0.0213
6.0178 16.5623 5.7229 12.2171 3.7546

;0 3.3333 3.3333 0 0
0 1.6666 1.6667 0.1 0

74.0812 12.8135 12.032 33.8268 60.9484

A

⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥= −
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
 

22

0 0 0 0 0 0
0 0 0 0 0.0213 0
0.4513 12.4877 14.7628 2.6993 0.5823 3.8753

;
0 0 3.3333 3.3333 0 0
0 0 1.6666 1.6667 10 0

76.2689 38.86 8.4688 4.8353 19.2739 61.4985

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − −

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦   
 

12

0.05 0 0 0 0 0
1.4189 0.283 0.0186 0.028 0.0535 0.0109

;0 0 0 0 0 0
0 0 0 0 0 0

72.0432 8.5496 0.1233 0.0173 1.1328 0.1128

A

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦   

 

21

0 0 0 0 0.444
0 0 0 0 0.005
0.1984 0.0186 0.029 0.1529 0.0034

.
0 0 0 0 0
0 0 0 0 0

20.1713 0.394 0.6452 5.9822 0.1128

A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− − −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦  
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Appendix 2  

The nominal stable state matrix A of the interconnected power system is 
 

100 2.2 0 0.5 0 0.3 0 0.2
1 0 0 0 0 0 0 0
0 0.5 100 2.6 0 0.6 0 1
0 0 1 0 0 0 0 0

.
0 0.3 0 0.6 100 3 0 0.1
0 0 0 0 1 0 0 0
0 0.2 0 1 0 0.1 100 3.4
0 0 0 0 0 0 1 0

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥⎣ ⎦

 


